FAIR Data Infrastructure for

Condensed-Matter

and

FAIRmat

Chemical Physics

ENHANCE YOUR DATA.

NFDi4ing

nfdi

Data)(PLANT

Forschungsdaten Infrastruktur

FAIRmat

DPG Condensed-Matter Section (SKM) and Chemical Physics of Solids

Interdisciplinarity within the field of research / consortium Extreme heterogeneity, very broad, full community on board Researchers, working groups, research networks (CRCs, Clusters, ...), universities, research institutions, societies, ...

Embedded in the European and international landscape

EOSC, GoFAIR, Research Data Alliance (RDA), FAIR-DI e.V. USA (e.g. NIST), China, Japan, Korea

Plenary and Invited talks, Publications, Organization of conferences International Conference on a FAIR Data Infrastructure for Materials Genomics June 3-5, 2020, largest conference in the field (539 participants)

"Findable and AI ready"

An *inclusive*, *user-driven* approach to develop easy-to-use tools and an infrastructure towards FAIR data processing, storage, curation, sharing, and Al readiness for future use of materials data

Worldwide, synthesis recipes are collected for personal use of the scientists, often documented in handwritten lab notebooks. Log files created by the synthesis instruments, often not kept.

M. Albrecht C. Felser

Goal 1: Establish metadata (standards), ontologies, and tools

Goal 2: Harmonize metadata schemes of synthesis and experimental characterization

Goal 3: Towards computer-aided development of synthesis recipes - interweaving experiment & theory

Goal 1: Metadata and workflows for the *extremely diverse* characterization methods used by the experimental condensed-matter community

M. Greiner C. Koch

Goal 2: Efficient and persistent linkage of data types to be implemented by means of LIMS and ELN solutions.

Each experimental probe has its specific challenges concerning processing, curation, and storage, owing to differences in volume, velocity, data formats, etc.

ELN: Electronic Lab Notebook; LIMS: Laboratory Information Management System

Huge variety of methods, e.g. sophisticated classical simulations (e.g. fluid dynamics), highly complex quantum-mechanical many-body techniques, and multi-scale modeling.

Goal 1: Integration of the NOMAD Laboratory into FAIRmat

Goal 2: Significant enhancement of its services

Goal 3: Much wider scope of methodologies

S. Botti K. Kremer T. Bereau

Different scientific methods require vastly different data handling (4V). Large amounts of very heterogeneous data of various sources need to be integrated. Long-term availability and data security.

Goal 1: Enabling individual scientists and research institutes to manage data following common principles, with compatible technologies and a shared interface

Goal 2: Creation of a FAIR data exploration and sharing platform

Goal 3: Become role model of data security

H. Bungartz W. Nagel

Can we have tools that not only get us organized but really enable us to enhance science in daily life?

C.Wöll

A. Groß

Goal 1: Test and demonstrate the functionality of the FAIRmat data infrastructure and identify weaknesses to be improved.

Goal 2: Show how the developed DI tools will significantly support the research of the various sub-communities.

Goal 3: Demonstrate the interfaces to and hand-shakes with other NFDI consortia.

Different scientific methods require vastly different data handling (4V). Large amounts of very heterogeneous data of various sources need to be integrated. Long-term availability and data security.

Goal 1: Enabling individual scientists and research institutes to manage data following common principles, with compatible technologies and a shared interface

Goal 2: Creation of a FAIR data exploration and sharing platform

Goal 3: Become role model of data security

W. Nagel

What is NOMAD

NOMAD makes materials science data FAIR

More than 12 million of simulations from over 400 authors world-wide

- → Free publication and sharing data of data
- → Extracts **rich metadata** for more than **40 codes**
- → All data in a **raw** and a common **machine readable** from
- → Use integrated tools to **explore**, **visualize**, and **analyze**

SEARCH NOMAD

LEARN MORE

NOMAD: A FAIR-data sharing platform for materials science

BLISH V EXPLOR		and Do		ad Dat	ta 🌘)												(J LOGIN	REGISTE
	ational dat								ELEMEN	TS	SYSTEM	I M	ETHOD	PRC	PERTIES	; U	PLOADS	Entri	es 👻	_
- Search w	vith quantity=	-value ns=0,Ti,C	8																	
There are	e 852 entries	left.																		
	Ъ		only	y compo	sition t	that exi	lusive	y contai	in these	e atoms	5							2 He		
	325 3 Li	Be											s B	°с	, N	° o	°F	¹⁰ Ne		
	¹⁴ Na	¹² Mg											3 AI	852 ³⁴ Si	15 P	952	9 17 Cl	¹⁰ Ar		
	¹⁹ K	20 Ca	21 Sc 。	22 Ti 152	²³ V 37	24 Cr 20	²⁵ Mn	²⁶ Fe	²⁷ Co _o	²⁸ Ni	°° Cu	³⁰ Zn	Ga ,	Ge	¹³ As	³⁴ Se 4	³⁵ Br	³⁶ Kr		
	³⁷ Rb 。	³⁸ Sr ₁₃	³⁹ Y 0	40 Zr 25	41 Nb 39	42 Mo 40	Tc o	Ru	⁴⁵ Rh	۴ ⁶ Pd ,	Ag o	°°Cd 。	ٌ In	^{so} Sn ,	SD o	S2 Te	53 1	Sta o		
	55 Cs	Ba 16		⁷² Hf 26	73 Ta 20	24 W 0	Re	0s	" Ir	⁷⁸ Pt	Au	Hg	TI	Pb	Bi	Po	At o	Rn		
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds 0	Rg	Cn	Nh	FI	Mc	LV 0	Ts	Og		
	Uue		\$7	58	50	60	61	62	63	64	65	65	67	68	63	70	21			
			La ,	Ce ,	Pr	Nd	Pm	Sm _o	Eu	Gd o	Tb	Dy	Ho	Er 0	101	Yb	Lu			
			Ac	Th 。	Pa	U	Np	Pu	Am 。	Cm 。	Bk	Cf 。	Es	Fm	Md	No	Lr 。			
																			-	
ENTRIES		MATER	IALS		GROUP	ED ENTR	RIES													
									DATASE	rs										
852 entries									DATASE	rs								Ð	* <>	ш
852 entries	\downarrow	Cod	de =		System	١.	c	rystal sy	ystem =		Spi	acegrou	p -		Authors	-		Ð	* <>	ш
Formula		Coo		1		-		rystal sy riclinic			5р . Р1		-				pi Ramp	ج rasad et al	* <>	
Formula	D4Ti		SP	;	System	h.	t						- -		Huan Tra	an, Ram			* <>	
Formula C10H180 C10H180 C10H180	D4Ti D4Ti	VAS	SP	:	System bulk	h.	t	iclinic			P1		- -		Huan Tra Huan Tra	an, Ram an, Ram	pi Ramp	rasad et al		•••
Formula C10H18C C10H18C C10H18C C10H18C C10H18C	04Ti 04Ti 04Ti	VAS	SP SP SP	:	System bulk bulk	Ι.	t t	iclinic			P1 P1		- -		Huan Tra Huan Tra Huan Tra	an, Ram an, Ram an, Ghar	pi Ramp nshyam F	rasad et al rasad et al	1	
С10H180	04Ti 04Ti 04Ti 04Ti	VAS VAS	SP SP SP	:	System bulk bulk bulk	lı.	t t t	iclinic iclinic			P1 P1 P1		j [∓]		Huan Tra Huan Tra Huan Tra	an, Ram an, Ram an, Ghar an, Ghar	pi Ramp Ishyam P	rasad et al rasad et al Pilania et al	1	

NOMAD to assist research processes

NOMAD (Oasis) for all of materials science (i.e. the FAIRmat project)

Manage materials science research data

FAIRmat builds on a federated infrastructure of local repositories

- → Organise research data through its whole life-cycle
- → Inclusion of data handling for experiments
- → Adaptable to your workflows and data-types
- \rightarrow A first step to connect with in the FAIRmat network
- → Oasis is being developed and you can shape its future

VISIT NOMAD OASIS WEB-SITE SOON

Basic organizational principles of FAIRmat

Design infrastructure and measures **bottom-up** Advance basic science of condensed-matter and materials physics Help the active researchers, and don't create burden Lead by example, not by rules

Join the FAIRmat activities https://www.fair-di.eu/fairmat/ Tell us your needs and worries

Integrating synthesis, experiment, theory, computations, and applications, FAIRmat will further the basic physical sciences in condensed-matter physics and chemical physics.

Support der Nutzer:innen

- Lösungen für die "last mile", die auf Fachgebiete und Nutzungsgewohnheiten zugeschnitten sind
- o Allgemein niedrige Eintrittsbarrieren

