Langfristige Nutzung von
Forschungssoftware

Rafael Gieschke, Dirk von Suchodoletz, Universitat Freiburg;
Klaus Rechert, Hochschule Kehl

Data)|PLANT

Software Preservation

e Software preservation is an important requirement to ensure re-
use certain digital (data-)objects

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

Software Preservation

e Software preservation is an important requirement to ensure re-
use certain digital (data-)objects

e Butre-using preserved software requires infrastructure
o Runtime dependencies (operating system, libraries, etc...)
o Hardware or hardware equivalents (emulation)

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

Software Preservation

e Software preservation is an important requirement to ensure re-
use certain digital (data-)objects

e Butre-using preserved software requires infrastructure
o Runtime dependencies (operating system, libraries, etc...)
o Hardware or hardware equivalents (emulation)

o And workflows, automation to make usable and reproducible

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

y = e
EaaS and CiTAR (CITAR e

e Preservation of born-digital objects from Apple Il to IBM PC

o Web-based

o Used by libraries to allow visitors to, e.g.,
m play archived computer games
m access content (in historic file formats) on CD-ROMs

o Migration often not possible or with potential loss of information
m — emulation
m provide and suggest pre-configured emulation environments (operating system, software to

view/edit file format)

e Same problems in RDM
o Migration not possible
o Preservation must be done on different levels
m software itself (e.g., container images)
m operating system
m hardware

Three example workflows

1. Base Emulation-as-a-Service system rendering digtial objects
2. Historic builds
3. Preserving containers

1. Emulation-as-a-Service rendering digital objects

==

Demo

https://b651fad4-55ac-4126-86f4-0298c23e8eb0.test.emulation.cloud/

https://b651fad4-55ac-4126-86f4-0298c23e8eb0.test.emulation.cloud/

2. Historic builds

Historic Builds = available

Ensuring usability of a scientific code base

Klaus Rechert | Uni Freiburg Jurek Oberhauser | Uni Freiburg

Rafael Gieschke ' Uni Freiburg

Archiving and Accessing Scientific Code

- Re-create (re-build) code from source

requires another set of dependencies
- — build dependencies
- Usually no formal description, implicit
. . Unix:
for a glven tlme ConteXt You need X11R6 and a "make" utility with the VPATH feature (e.g. GNU make).

For serial, ethernet and audio support, you need pthreads. To use the GUI

preferences editor, you also need GTK+ version 1.2 or better. On Linux, you
need glibc 2.8 or better.

RPM packages
protobuf protobuf-c protobuf-c-devel protobuf-compiler protobuf-

devel protocbuf-python

Deb packages
libprotobuf-dev libprotobuf-c-dev protobuf-c-compiler protobuf-
compiler python-protobuf

Example

import random
random.seed(1) # RNG initialization

S Python <3.2:
-1,0,1,0,-1,-2,-1,0,-1,-2

walk = []
for i in range(10):
step = random.choice([-1,+1])

X += step
walk.append(x) Pyth =3.3:
print (walk) e o 1,014,210

Saving output to disk
with open('results-R2.txt', 'w') as fd:
fd.write(str(walk))

From:
“Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into

Scientific Contributions” von Fabien C. Y. Benureau und Nicolas P. Rougier.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758530/

Infrastructure and Requirements

' H CITING &
CCITAR
- Archival, management and access to historic (build)

environments
o Emulation infrastructure EaaS(l), CiTAR, etc.
o Systematic collection of relevant “base” environments
o Maintain/archive/manage external software repositories
m Distribution repositories
m Special “repositories” like npm, pip, CPAN, ...

— ideally have snapshots to allow implicit versioning

Historic Build Environments

Build environment

Machine (emulator) + installed
disk image
Managed context

E.g. time/date settings
Isolated network with transparent
repository mapping

Isolated Network .
build
machine
I:l (=] (-
i O ———— (18
pywb internal Repository
hosting WARCs DNS / DHCP Proxy
service
|
int./ext.

Web Archive Internet
L 1\
\ !
—— Jk

3. Preserving containers

@rkt N

Container —

le
& =

technical dependencies I

user provided object

G _'______i____-i

I . 0 I

L Container RunhEne !

 E T |

| E |

esewaﬂon s . l |

Pres isks 5 Linux OS r

s |

0§ LA

| Hardware |

| |

Preserving containers

technical dependencies

p\'esewaﬂon
risks

rkt N

SHIFTER

user provided object

le
& =

d— —

Container Runtime

4

[

£

g

2 . '
5 Linux OS

o

T

£

(=]

(]

Hardware

Container —

—_—— e — = —

Mostly standardized as Open Container Initiative
(OCl) Image Format (layered .tar.gz or .tar.zst files)

Might not be available forever on, e.g., Docker Hub
(freemium), required version (“latest”) might not be
obvious (or not be available anymore/overwritten)

Somehow standardized in Open Container Initiative (OCI)
Runtime Specification

Generally provides very strong backward compatibility

Plattform: abstracted away by OS
ISA/CPU: x86(-64) not standardized, mainly two
iImplementations; backward-(in)compatible extensions?

Preserving containers

technical dependencies I

pl‘esewa“on
risks

|
|
|
|
|
|

@rkt N

1
stable di9- oblec

]

file system

Container

le
& =

user provided object

Container Runtime

-3 -——

Linux 0S|
\ 4

Hardware

container runtime

> runtime configuration

ext. dependencies

ech-
stable t
env\ron‘“en‘

OCl runC

Linux OS

Emulator

1ew.o} Jaulejuod ausuab

awiun Jaulejuod apauahb

|
011101010010
110110101
11111
0100
01

011101010010
010110101
101111

0100

101

011101010010
110110101
11111

0100

01

Stable disk image
as single file

Different versions
Linux 4.4, 4.19, 5.0, ...

Different emulators
KVM/QEMU, QEMU,
Bochs, ...

Demo

https://a19b53¢c8-2990-43ef-8ccd-6353¢c370d056.test.emulation.cloud/

https://a19b53c8-2990-43ef-8ccd-6353c370d056.test.emulation.cloud/

Conclusion

Boundaries between software and data fluent
Both are digital objects
Make objects as uniform as possible to scale
Need emulation for long-term access
Need workflows to make usable
Need integration into existing platforms
Into preservation system
Into user’s workflows: continuous access and preservation

