
Langfristige Nutzung von

Forschungssoftware
Rafael Gieschke, Dirk von Suchodoletz, Universität Freiburg;

Klaus Rechert, Hochschule Kehl

Software Preservation

● Software preservation is an important requirement to ensure re-

use certain digital (data-)objects

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

Software Preservation

● Software preservation is an important requirement to ensure re-

use certain digital (data-)objects

● But re-using preserved software requires infrastructure
○ Runtime dependencies (operating system, libraries, etc…)

○ Hardware or hardware equivalents (emulation)

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

Software Preservation

● Software preservation is an important requirement to ensure re-

use certain digital (data-)objects

● But re-using preserved software requires infrastructure
○ Runtime dependencies (operating system, libraries, etc…)

○ Hardware or hardware equivalents (emulation)

● And workflows, automation to make usable and reproducible

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

https://www.softwarepreservationnetwork.org/emulation-as-a-service-infrastructure/

EaaS and CiTAR

● Preservation of born-digital objects from Apple II to IBM PC
○ Web-based

○ Used by libraries to allow visitors to, e.g.,

■ play archived computer games

■ access content (in historic file formats) on CD-ROMs

○ Migration often not possible or with potential loss of information

■ → emulation

■ provide and suggest pre-configured emulation environments (operating system, software to

view/edit file format)

● Same problems in RDM
○ Migration not possible

○ Preservation must be done on different levels

■ software itself (e.g., container images)

■ operating system

■ hardware

Three example workflows

1. Base Emulation-as-a-Service system rendering digtial objects

2. Historic builds

3. Preserving containers

1. Emulation-as-a-Service rendering digital objects

https://b651fad4-55ac-4126-86f4-0298c23e8eb0.test.emulation.cloud/

Demo

https://b651fad4-55ac-4126-86f4-0298c23e8eb0.test.emulation.cloud/

Historic Builds
Ensuring usability of a scientific code base

2. Historic builds

Archiving and Accessing Scientific Code

- Re-create (re-build) code from source

requires another set of dependencies
- → build dependencies

- Usually no formal description, implicit

for a given time context

Example

From:

“Re-run, Repeat, Reproduce, Reuse, Replicate: Transforming Code into

Scientific Contributions” von Fabien C. Y. Benureau und Nicolas P. Rougier.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758530/

Infrastructure and Requirements

- Archival, management and access to historic (build)

environments
○ Emulation infrastructure EaaS(I), CiTAR, etc.

○ Systematic collection of relevant “base” environments

○ Maintain/archive/manage external software repositories

■ Distribution repositories

■ Special “repositories” like npm, pip, CPAN, …

→ ideally have snapshots to allow implicit versioning

Historic Build Environments

Build environment

- Machine (emulator) + installed

disk image

- Managed context
- E.g. time/date settings

- Isolated network with transparent

repository mapping

3. Preserving containers

Mostly standardized as Open Container Initiative

(OCI) Image Format (layered .tar.gz or .tar.zst files)

Might not be available forever on, e.g., Docker Hub

(freemium), required version (“latest”) might not be

obvious (or not be available anymore/overwritten)

Somehow standardized in Open Container Initiative (OCI)

Runtime Specification

Generally provides very strong backward compatibility

Plattform: abstracted away by OS

ISA/CPU: x86(-64) not standardized, mainly two

implementations; backward-(in)compatible extensions?

Preserving containers

Different versions

Linux 4.4, 4.19, 5.0, ...

Different emulators

KVM/QEMU, QEMU,

Bochs, ...

Stable disk image

as single file

Preserving containers

https://a19b53c8-2990-43ef-8ccd-6353c370d056.test.emulation.cloud/

Demo

https://a19b53c8-2990-43ef-8ccd-6353c370d056.test.emulation.cloud/

Conclusion

• Boundaries between software and data fluent

• Both are digital objects

• Make objects as uniform as possible to scale

• Need emulation for long-term access

• Need workflows to make usable

• Need integration into existing platforms

• Into preservation system
• Into user’s workflows: continuous access and preservation

