University of Stuttgart
----- Visualization Research Center (VISUS)

MegaMol — Sustainable
Visualization Software
for Research and
Education

Patrick Gralka, Matthias Braun, Guido Reina,
Thomas Ertl

image source: MegaMol developer team

ms m Visualization Research Center
University of Stuttgart

What is MegaMol?

* Visualization Framework
 Primarily for scientific visualization

* Focus on extensibility and adaptability

* First version from 2007

* In development ever since

Brief summary of DFG sustainability project follows

« Some details about revised decisions and lessons learned

image source: MegaMol developer team

image source: MegaMol developer team

image source: MegaMol developer team

Open-Source Platform O &

 Status quo ante:

o

« Core components, plugins, and support libraries in

different, self-hosted SVN repositories

« Goals:

« Easy access and dissemination

* Modern development workflow

+ Steps taken:

» Merging of different code bases

» Migration to git and public GitHub repository

* Result:

» Software gained visibility, easier to contribute
» “Statement” about openness

* Pre-requisite for subsequent sustainability steps

projects 2 [0 wiki @ Security

¥ master - ¥ 16 branches

reinago Merge pull request #1113 from Gegell/fix/adios-flex-convert -

]
github

cmake

core

«core_gl

docs
externals/glad
frontend
plugins
remoteconsole

utils

vislib

2 al

ChakeLists.txt

(7]

LICENSE
README.md
azure-pipelinesym|

vepkg-configurationjson

00O 0E

vepkg json

README.md

1= Insig

© B tags

hts @8 Settings

Go to file

style fix

Change actions token

cleanup

update docs and cleanup
icet vepkg

Format fix.

Merge pull request #1113 from Gegell/fix/adios-flex-convert
cxxopts from vepkg

Merge branch ‘master’ inta vepkg

2lib + libpng vepkg migration

gl fixes, mwk interop fixes

update clang-format-rules

format vepkg json

Removed the old QuickSurfRenderer and modernized QuickSurf
cleanup vepkg build dirs

Cleanup

update image paths

Merge branch ‘master’ into vepkg

update vepkg

now we can also read zfp'd adios

o MegaMol

MecaMolica lizati

University of Stuttgart and at the Computer Graphics and Visualization Group of the TU Dresden.

® agsadac 4 hoursago {914,128 commits

2

g

0

months ago
months ago
15 days ago
8 days ago
last month
15 days ago
last month
& days ago
4 hours ago
months ago
fast month
months ago

last month

months ago

last month
months ago
15 days ago

onths ago

months ago
last month
15 days ago

days ago

7

used to visualize point-based molecular data sets. This software is developed
within the Collaborative Research Center 716, subproject D.3 at the Visualization Research Center (VISUS) of the

MegaMol succeeds MolCloud, which has been developed at the University of Stuttgart in order to visualize point-

based data sets. MegaMol is written in C++, and uses an OpenGL as Rendering-API and GLSL-Shader. It supports the
operating systems Microsoft Windows and Linux, each in 64-bit version, In large parts, MegaMol is based on VISlib, a
C++-class library for scientific visualization, which has also been developed at the University of Stuttgart.

o Azure Pipeli

Manual

See the manual for detailed instructions on how to build and use MegaMol.

About

A cross-platform visualization

prototyping fral

mework

& megamol.org/

visualization framework gy cuda

data-visualization

prototyping optix

ospray framewarks.

Readme

BSD-:
37 stars

8 watching

< 0 %8

24 forks

3-Clause license

Contributors 24

Azl o

09

+ 13 contributors

Languages

® Can ® Cuda 16%
NASL 249
Other 0.4%

Build Process & &%

-

Status quo ante:
« Copy content of different repositories together

» Specialized tools & scripts; platform-dependent build workflows

Goals:
* "One click" experience (collaborators!)

» Use well-known tools for automation, easier integration of external libraries and maintenance

Steps taken: ACMake

» Completely new CMake-based build environment
» Externals (43) via vcpkg (CMake & C++)

Lessons learned/Open challenges:

» Disregard minor issues and personal opinions about de-facto standards!

« First from-scratch build very expensive, needs dependency caching

Portability So
 Status quo ante:

« Executable with different functionality depending on
shipped (plugin-) DLLs (prone to pollution)

« Narrow deployment options

« "Out of the ordinary" builds can cause disruptions
* Goals:

* More deployment options

 Eliminating possibilities of failure

» Steps taken:

» Refactoring of front end for simplicity & flexibility

» Assingle, integrated executable; functionality dependent on build options

* Open challenges:

« OS-independent solutions; Docker/Singularity; virtualization in general

_\tests\projects\ospray\ls1_co2_merker 1.lua: SSIM = 0.9999996090442023
i \ospray es_ospray. 1.lua: SSIM = 0.9692673617824491
ospray es_ospray_nogl.1.lua: SSIM = 0.9692673617824491

C o nti n u o u s I n te g rati o n l Tests & é"" \tests\projects\sphererendereritest_xyzr_float_int_float-AmbientOcclusionSphere lua: SSIM = 0.9390675409400503

\tests\projects\sphererendereritest_xyzr_float_int_float-BufferArraySphere lua: SSIM = 0.9386821416599603

Result

Reference

Status quo ante:

 Local builds, manual releases, no regression

Goals:
* Always compiling and working main branch

* Merge only compiling feature branches

Steps taken:

stdout I

* Cl on local resources via Azure DevOps

(info) |Default MegaMol Frontend 3@@@ Configuration:

(info)|Main: RuntimeConfig values:
tory:

* "Visual" regreSS|on tests Emut:;fd- v

ache\src\megamol\build\vs-ninja-22\install\bin\
exe --no
Version: 93d8bb33l1alef8bc

Configuration files:

Lessons |earned/Open Cha||enges: VENSSD.Cache\src\mensno\but1d\ve -ninfa-22\inseal1\bin\meganc] confin. 1us
* Anything else is even more "expensive" for expanding code/user base
» Thorough testing too expensive to do continuously (15’ for tiny coverage)

* No GPU worker nodes yet — centralized resources desirable

gui --privacynote=false --hidden --window 1920x108@ ..\tests\projects\sphererenderer\tes

®

User Experience & &

S

Status quo ante:

« Separate executables to configure visualization pipeline
and run it

Goals:
e Streamlined UX

» Manipulation of visualization pipeline

Steps taken:
» Single executable
« Complete rework of the user-facing front end

« Better widgets plus direct manipulation

Open challenges:
 Portable (multi-modality) Ul

» Performance decoupling / remote Ul

Developer Experience & S s

Status quo ante:

* Pre-C++11 code; touched by many, understood by few

Goals:

» Better extensibility; Literal code

Steps taken:
* Removal of opaque implicit automatisms

» Deduplication of code; consolidation of functionality

Lessons learned:

image source: MegaMol developer team

 Make sure a problem is solved at the correct abstraction level
» Do not be afraid to introduce that abstraction level — you will do it in 2 years anyway
» You think you are solving a different problem, so you write specialized code
« Often you are not!

« At least one person needs to see the big picture

Community and Outreach

Status quo ante:
* No extensive dissemination

« Hidden gem, invite only vibes

Goals:
» Attract new users

 Attract broader support

Steps taken:
» Active engagement on GitHub, better documentation, ...

» Leveraging science/industry cooperation projects

Lessons learned/Open challenges:

» Entering wide spectrum between “in-house tool” and “actual product”
« Puts strain and responsibility on people not paid, trained, rewarded for the tasks

* Investigations on their own: Shonan / VisGap workshop series with impressive resonance

Conclusion

« MegaMol continuously strives to improve its FAIRness
» Development is open & public
» Improved build & usage experience
 Improving platform support, improving data ingestion

» Mission statement: replacing one-shot prototypes by reusable software

* Opaque implicit convenience for specific use cases is not desirable

« Have an abstraction that allows for concise explicit formulation instead!

* Do not put off refactoring, especially when it reduces code (complexity)

» Cascade effect (both ways!)

Thank you for your attention

Many thanks go to the main MegaMol contributors (by #commits)

Matthias Braun, Sebastian Grottel, Guido Reina, Tobias Rau, Patrick Gralka, Moritz Heinemann, Karsten Schatz,
Christoph Muller, Sergej Geringer, Katrin Scharnowski, Michael Becher, Michael Krone, Alexander Straub, Christoph
Schulz, Dominik Sellenthin, Bertram Thomal}, Daniel Kauker, Oliver Fernandes, Thomas Marmann, Florian Friel3, Michael
Worner, Alex Heller, Joachim Staib, Nina Dorr

Special thanks to the DFG for funding project 391302154

Backup & Details

How large is MegaMol?

2022-09-15 10:00 494 KLOC @ master
2017-09-15 10:00 455 KLOC @ master

>300 modules

15 services

,Good“ commits nearly remove as much code as they add ;)

* cloc --include-lang=C++,"C/C++ Header",CMake,C,CUDA,GLSL,Python

Examples: You are not solving a different problem

- System state: XML
« Remote / Syncing: binary protocol
- Scripting for convenience and automation: Lua

—~Everything is Lua, also correct abstraction for template/example visualizations per data type

« Sync state for remote
« Sync state from GUI
 Get state for reproducibility

—~>No graph walkers, change callbacks!

Some examples for implicity functionality

 Auto-loading of known formats via graphs deposited in the source code

- Self-configuring MegaMol based on available dlls

