¢ University of Stuttgart // 4 DuMu*
Institute for Modelling Hydraulic and Environmental Systems - '

%'le Department of Hydromechanics and Modelling of Hydrosystems

RSE in DuMuX

Experiences from
15 years of development

Dennis Glaser
Bernd Flemisch



Exemplary Applications

CO2 injection

Root-soil interaction

lag,| m/s]

I 1.2e-04

Be5
665
- dab

I- 2e5
1.6e-07

Fracture flow



X '1»
Outline VAR 115

y
 /
|

Overview over the project



DuMuX as an external Dune module

o9

P o -

dis::rahzaﬂm modules Exlra grids external modules

E)Cm)e| e || o

Distributed and Unified Numerics Environment




X '1.-
Status quo Vi \lefli %le

Main user base at the LH2, but there are considerably many external users

Almost all of the development is done at the LH2, occasional external contributions
Almost all developers have an engineering background with little experience in SD
> 70 contributors so far

2961 version-controlled files

566 tests, the majority being regression tests by means of small simulations

Documentation:
* Website
* Doxygen
» Handbook

e Course material



Development process

DuMu*

e
it



X 1
Development process _ /\Eﬂi %_‘;\_I.H2

Git workflow

Y| master

. release-feature-1 | _
All features are merged into master '~ .—' [

Once a release branch is created, relevant features
are merged into both master and release

Release branches are maintained after release,
bugfixes are backported

Rebase required before merging is possible (not
depicted in the image above)



Development process
Dumux days

Once a month, the core
developers meet and open
issues are distributed (see here)

¢ © @
V
O
. A HEER
o 2




X '1.1'-
Development process . /\Ef'i %.;,‘-*‘,I.H’

Releases

A release manager is assigned
for each release

The release manager tasks are
listed in a GitLab Issue template
(see e.g. here)



Quality assurance



X 1
Quality assurance ;/\Eﬂi %;;:‘_I.Hz

Merge requests: guidelines shown in default template

= O M

H® Db R a9 )

=

© DO

Choose a template

Preview |

What this MR does / why does DuMux need it:

TODO: insert text here

Notes for the reviewer

TODO: insert text here

Before you request a review from someone, make sure to revise the following points:

does the new code follow the style guide?

do the test pipelines pass? (see guide on how to run pipelines for a merge request)

is the code you changed and/or the new code you wrote covered in the test suite? (if not, extend the existing tests or write new ones)

does your change affect public interfaces or behavior, or, does it introduce a new feature? If so, document the change in CHANGELOG.md .

is the list of the header includes complete? (“include what you use")

all files have to end with a \n character. Make sure there isno \ No newline at end of file comment in "Changes" of this MR.

(if not applicable remove) are newly introduced or modified physical values/functions backed up with a scientific reference (including doi) in the docs?
(if not applicable remove) if the examples are modified, is the documentation regenerated (using generate_example docs.py )

Closes #1054 (closed)




Quality assurance
Test pipelines

=P Hard dependency
== P Optional dependency



X 1
Quality assurance _/\/Tﬂi %‘:‘:‘_I.H2

Test pipelines

* What do we test?

=== Hard dependency
== P Optional dependency

Core functionality in absence
of optional dependencies




Quality assurance
Test pipelines
What do we test?

=P Hard dependency
== P Optional dependency

Features requiring optional
dependencies

SN e



X '1-'
Quality assurance /\/?‘jﬂi %?-‘-;‘_I.H2

Test pipelines

* What do we test?

=P Hard dependency
== P Optional dependency

Downstream modules




- s DuMu* -
Quality assurance / \/M %I.H2

Test pipelines

What do we test?

=P Hard dependency
== P Optional dependency

~" + linting
+ different compilers & versions
+ install scripts




- DuMu* 4
Quality assurance /\/\N~ %I.H2

Test pipelines

git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/pipelines/21181

What do we test?

=P Hard dependency
== P Optional dependency

~" + linting
+ different compilers & versions
+ install scripts




X '1-'
Quality assurance /\/?‘jﬂi %?-‘-;‘_I.H2

Test pipelines: saving CPU time

* "Problem”: very many tests that take several hours to compile (on a single core)

» Solution strategy:

* Run only the tests that are affected by changes since the last successful run

» Only schedules run the entire test suite

* An example: git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/pipelines/20820




X ; .'
Summary AN e

Development
* Mainly at our group

 Standardized Git workflow enforced by GitLab policies where possible and otherwise
instructed via merge request template

« DuMuX days in order to continuously close issues
Release process is “standardized” via issue template

Automated test pipelines ensure

» Support of (at least) current and previous releases of dune dependencies
* Different compilers and/or versions

* Different C++ language standard (currently C++17 and C++20)

* Images used in test pipelines are rebuilt every night



X ; .'
AN e

Large code base, few developers are familiar with all aspects of it
Currently, only very few developers are familiar with the inner workings of the Cl

Difficult to integrate/motivate new developers, possibly due to
* the large project size
» complexity of the code
« “professional appearance”:
* many things to consider in each merge request

* merge request “police” commenting on many (sometimes small) things



University of Stuttgart
Germany

Thank youl!

Dennis Glaser

e-mail dennis.glaeser@iws.uni-Stuttgart.de
phone +49 (0) 711 685- 64624
fax +49 (0) 711 685- 60430

Universitat Stuttgart

Department of Hydromechanics and Modelling of Hydrosystems
Pfaffenwaldring 61, 70569 Stuttgart, Germany

University of Stuttgart 16.09.2022



Quality assurance
Test pipelines

* Let's revisit the dependency structure

applicat

il

iy e

dist:rahzaﬂm modules [ extra grids

external mudulus‘
BS~/ -

Distributed and Unified Numerics Environment




