
Institute for Modelling Hydraulic and Environmental Systems

Department of Hydromechanics and Modelling of Hydrosystems

RSE in DuMuX
Experiences from

15 years of development

Dennis Gläser
Bernd Flemisch



Exemplary Applications

CO2 injection Root-soil interaction Fracture flow



Outline

Overview over the projectOverview over the project Development processDevelopment process Quality assuranceQuality assurance



DuMuX as an external Dune module



Status quo

• Main user base at the LH2, but there are considerably many external users

• Almost all of the development is done at the LH2, occasional external contributions

• Almost all developers have an engineering background with little experience in SD

• > 70 contributors so far

• 2961 version-controlled files

• 566 tests, the majority being regression tests by means of small simulations

• Documentation:

• Website

• Doxygen

• Handbook

• Course material



Overview over the projectOverview over the project Development processDevelopment process Quality assuranceQuality assurance



Git workflow

Development process

All features are merged into masterAll features are merged into master

Once a release branch is created, relevant features 
are merged into both master and release

Once a release branch is created, relevant features 
are merged into both master and release

Release branches are maintained after release, 
bugfixes are backported

Release branches are maintained after release, 
bugfixes are backported

Rebase required before merging is possible (not 
depicted in the image above)

Rebase required before merging is possible (not 
depicted in the image above)



Dumux days

Development process

Once a month, the core 
developers meet and open 

issues are distributed (see here)

Once a month, the core 
developers meet and open 

issues are distributed (see here)



Releases

Development process

A release manager is assigned 
for each release

A release manager is assigned 
for each release

The release manager tasks are 
listed in a GitLab Issue template 

(see e.g. here)

The release manager tasks are 
listed in a GitLab Issue template 

(see e.g. here)



Overview over the projectOverview over the project Development processDevelopment process Quality assuranceQuality assurance



Merge requests: guidelines shown in default template

Quality assurance



Test pipelines

Quality assurance

Hard dependency

Optional dependency



Test pipelines

Quality assurance

• What do we test?

Hard dependency

Optional dependency

Core functionality in absence 
of optional dependencies

Core functionality in absence 
of optional dependencies



Test pipelines

Quality assurance

• What do we test?

Hard dependency

Optional dependency

Features requiring optional 
dependencies

Features requiring optional 
dependencies



Test pipelines

Quality assurance

• What do we test?

Hard dependency

Optional dependency

Downstream modulesDownstream modules



Test pipelines

Quality assurance

• What do we test?

Hard dependency

Optional dependency

+ linting
+ different compilers & versions
+ install scripts

+ linting
+ different compilers & versions
+ install scripts



Test pipelines

Quality assurance

• What do we test?

Hard dependency

Optional dependency

+ linting
+ different compilers & versions
+ install scripts

+ linting
+ different compilers & versions
+ install scripts

git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/pipelines/21181git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/pipelines/21181



• “Problem”: very many tests that take several hours to compile (on a single core)

• Solution strategy:

• Run only the tests that are affected by changes since the last successful run

• Only schedules run the entire test suite

• An example: git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/pipelines/20820

Test pipelines: saving CPU time

Quality assurance



• Development

• Mainly at our group

• Standardized Git workflow enforced by GitLab policies where possible and otherwise 

instructed via merge request template

• DuMuX days in order to continuously close issues

• Release process is “standardized” via issue template

• Automated test pipelines ensure

• Support of (at least) current and previous releases of dune dependencies

• Different compilers and/or versions

• Different C++ language standard (currently C++17 and C++20)

• Images used in test pipelines are rebuilt every night

Summary



• Large code base, few developers are familiar with all aspects of it

• Currently, only very few developers are familiar with the inner workings of the CI

• Difficult to integrate/motivate new developers, possibly due to

• the large project size

• complexity of the code

• “professional appearance”: 

• many things to consider in each merge request

• merge request “police” commenting on many (sometimes small) things

Issues



e-mail

phone +49 (0) 711 685-

fax +49 (0) 711 685-

Universität Stuttgart

Thank you!

Pfaffenwaldring 61, 70569 Stuttgart, Germany

Dennis Gläser

64624

60430

Department of Hydromechanics and Modelling of Hydrosystems

dennis.glaeser@iws.uni-Stuttgart.de

16.09.2022University of Stuttgart 21



Test pipelines

Quality assurance

• Let’s revisit the dependency structure


